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1. Introduction

The boundary element method (BEM) is a powerful tool for solving exterior sound field
problems such as, e.g., determining how an acoustic transducer disturbs the sound field [1–3].
However, unless the problem can be reduced to two dimensions the required computer memory
and calculation time increase dramatically with the frequency [4].
The present study has been motivated by the need of modelling how a large array of identical

microphones placed in a regular pattern disturbs the sound field. Such measurement arrays are
used, e.g., for near-field acoustic holography [5,6]. However, modelling such a large array with
BEM will require a very long CPU time and an enormous amount of RAM per frequency, unless
some simplifying approximations can be made.
An approximate analytical method of calculating scattering from two rigid spheres has been

used by Seybert et al. [7] and Juhl [8] as a test case for numerical calculations using BEM. An
analytical solution is available for scattering of a plane wave by a rigid sphere [9]. The
approximate method involves adding the scattered sound field caused by one sphere in the
absence of the other to the sound field on the surface of the other sphere in the absence of the first
one. The approximation, which ignores interacting scattering effects, was found to give fairly
accurate results for the case of scattering by the two spheres exposed to plane wave incidence both
in the direction of the lines between the spheres [7] and in the perpendicular direction [8] at low
frequencies and for sufficiently large distances between the spheres.
To save memory and calculation time, a similar approximation might be used in connection

with BEM for more general scattering problems. However, ignoring all interacting scattering
effects by dealing with each part of a multipart body separately might not be sufficiently accurate
under general sound field conditions. On the other hand, it might be possible to improve the
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accuracy by dealing with two bodies at a time. Thus, the purpose of this note is to examine an
approximate method of modelling the scattering caused by composite bodies using BEM.

2. Numerical calculation of scattering by rigid bodies

Consider the case where a given sound field in free space, defined by the sound pressure pI ; is
disturbed by a rigid body defined by the surface S: The resulting sound pressure p satisfies the
Helmholtz integral equation [4,10,11]

CðPÞpðPÞ ¼
Z

S

pðQÞ
qGðRÞ
qn

dS þ 4ppI ðPÞ; ð1Þ

where Q is a point on the surface S, R is the distance between P and Q; GðRÞ ¼ e�ikR=R is the free-
space Green function, and C is a geometrical constant that equals the solid angle at P measured
from outside the scattering body. The operator q=qn gives the component of the gradient normal
to the surface S, pointing away from the body. The time factor eiot has been omitted.
The boundary element method involves solving Eq. (1) numerically by dividing the surface of

the body into j elements and placing the point P successively at each of the nodes [4]. The mesh
must be fine enough to represent the shape of the body, and at least four elements are required per
wavelength for linear elements or two elements per wavelength for quadratic elements [4]. The
result is a matrix equation

ðH� CÞp ¼ Ap ¼ �4ppI ; ð2Þ

where the complex vector p contains the unknown nodal sound pressures, pI is the nodal sound
pressures of the incoming wave in absence of the scattering body, and element hij of the matrix H
is the integral of the normal derivative of the Green function over the jth element with respect to
the ith calculation point. When the collocation point P coincides with Q the integral equation is
singular (R=0) [4,12]. One method of solving this problem involves the introduction a local polar
co-ordinate system ðr; yÞ; such that the singularity is placed at r ¼ 0: The singularity is neutralized
because of the factor r in the Jacobian of the transformation [13].
The matrix A has the size n � n; where n is number of nodes, and it depends only on the

frequency and on the shape of the scattering body. The number of floating point operations
(flops) needed for computing the matrix A is proportional to n2; and the number of flops needed
for solving Eq. (2) is proportional to n3: If ‘‘double precision’’ is used (8 bytes) both for the real
and the imaginary part of each element of A the storage requirement amounts to 16� n2 bytes.

2.1. An approximate method for determining scattering caused by multipart bodies

Full three-dimensional scattering problem may well require thousands of nodes, so a very large
RAM memory is needed and very long calculation times can occur. However, if the scattering
object consists of several unconnected parts it might be possible to obtain satisfactory accuracy by
adding the scattered sound field generated by each part in the absence of the others, as
demonstrated for the case of two spheres in Refs. [7,8].
To test this hypothesis, scattering by two parallel, cylindrical microphones has been examined.

In Fig. 1 the relative mean square error (the square of the difference between the ‘‘exact’’ pressure
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determined with a full BEM model of the two microphones and the approximate pressure
computed using an approximate BEM technique similar to the approximate analytical method
used in Refs. [7,8]) as a function of the angle of incidence of a plane wave is shown. It is apparent
that the approximate method is quite accurate for axial incidence, but it can also be seen that its
performance deteriorates with the angle of incidence.

2.2. An improved approximate method

A less efficient but potentially more accurate method for multipart bodies is described in what
follows. First the vector of nodal sound pressures pB on a given body B in the absence of the other
bodies is calculated. In the next step, one of the neighbouring bodies, say no 1, is taken into
account, and the nodal sound pressures on the combined body are determined. From this vector,
the sound pressures that correspond to the nodes of the body B; pB1ðnBÞ; are selected, and pB is
subtracted from pB1ðnBÞ; which gives the sound pressure increase on the body B caused by body
no. 1. This technique is used for calculating the sound pressure increase pBm on B caused by all
surrounding bodies, one at a time. Eventually, the total pressure increase on the body B is
determined as the sum of the sound pressure increase pB caused by the body itself and the
additional contributions from the surrounding bodies (1; 2; 3;y; M)

ptot ¼ pB þ
XM

m¼1

pBm: ð3Þ

2.3. Discussion

The simplest method ignores all interactions between bodies. The improved method described
in Section 2.2 deals with the body under test and each of the surrounding bodies separately, and
ignores reflections between the bodies that surround the body under investigation. Both methods
are particularly economical for large arrays of identical bodies placed in a regular arrangement
and having the same orientations in space, such as a typical microphone array. The accuracy can
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Fig. 1. Relative mean square error of simple approximate method for two parallel microphones, averaged over

frequencies up to ka ¼ 1; where a is the radius of the microphones, and calculated for plane waves of four different

angles of incidence.
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be expected to be better for plane wave incidence perpendicular to the plane of the array than for
any other sound field, and better the longer the distance between adjoining bodies.

3. Results

The approximate method has been tested on an array consisting of nine 1-in microphones
placed in a regular pattern as shown in Fig. 2. Each microphone had a radius of 11.9mm and a
height of 108mm. The surface of each microphone was divided into 418 nodes, and the full model,
which was needed as a reference, consisted of 3762 nodes. The calculation of the matrix A for just
one frequency required 37622 � 16 bytes=226MB of RAM. By comparison, calculating the
matrix for the centre microphone and one of the eight surrounding microphones required an
RAM memory of ð2� 418Þ2 � 16 bytes. Four of the matrices are identical, and the other four are
also identical, so all in all the storage requirements amounted to 2� ð2� 418Þ2 � 16
bytes=22.4MB. The number of flops needed for setting up the equations was also about ten
times less that for the full model ð37622=2� ð2� 418Þ2D10Þ; and the number of flops needed for
solving the system for one frequency was about 11 times less than that for the full model
ð37623=8� ð2� 418Þ3D11:4Þ:
In Figs. 3 and 4 the results obtained with the full model consisting of nine microphones are

compared with the results of the approximate method for plane waves of four different angles of
incidence, 01, 301, 601 and 901, measured from the axis of one of the microphones. In Fig. 3 the
distance between the centres of the closest microphones is 50mm, and in Fig. 4 it is 35mm. The
calculations have been carried out for frequencies up to 4.6 kHz, corresponding to the
dimensionless frequency ka ¼ 1; where a is the radius of the microphones.
As can be seen in Fig. 3, the approximate method performs quite well in the entire

frequency range when the distance between the microphones is 50mm. Up to 1100Hz the results
are almost perfect at all angles of incidence. At higher frequencies small differences caused by
reflections between the surrounding microphones occur. The maximum error is approximately
0.5 dB.

Fig. 2. Cross-section of microphone array and one of the microphones.
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The approximation is somewhat less accurate when the distance between the centres of the
microphones is 35mm, corresponding to three times the microphone radius. At low frequency
the method is quite accurate, but at higher frequencies deviations of up to 2 dB occur. Note the
difference between the ‘‘true’’ curves shown in Figs. 3 and 4.

4. Conclusions

An approximate method of calculating the scattering of composite bodies has been examined.
The method, which involves determining the increase of the sound pressure on one body caused
by each of the surrounding bodies one at a time, has been used for determining how an array of
cylindrical microphones placed in a regular grid disturbs a plane wave propagating in an arbitrary
direction. There is a very significant reduction in the required computer resources if the bodies are
identical, have the same orientation, and are placed in a regular pattern, which is the case with the
microphone array. In the test case both the required RAM memory and the number of flops
needed for calculating the matrix A were reduced by a factor of ten, whereas the number of flops
needed for solving the system were reduced by a factor of 11.
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Fig. 3. Sound pressure increase on the membrane of the centre microphone computed with the full model (–*–) and

with the approximate model (–J–) for different angles of incidence (a) 01, (b) 301, (c) 601, and (d) 901. The distance

between neighbouring microphones is 50mm.
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In general, the method performs better for sound incidence almost perpendicular to the plane of
the array than for large angles of incidence, and better the larger the distance between the
microphones. The method has been found to be accurate up to dimensionless frequency ka ¼ 1
when the distance between the microphones is more than 3a; where a is the radius of the
cylindrical microphones.
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